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Abstract. We consider in parallel three one-dimensional spin models with kinetic constraints: the para-
magnetic constrained Ising chain, the ferromagnetic Ising chain with constrained Glauber dynamics, and
the same chain with constrained Kawasaki dynamics. At zero temperature the dynamics of these models
is fully irreversible, leading to an exponentially large number of blocked states. Using a mapping of these
spin systems onto sequential adsorption models of, respectively, monomers, dimers, and hollow trimers, we
present exact results on the statistics of blocked states. We determine the distribution of their energy or
magnetization, and in particular the large-deviation function describing its exponentially small tails. The
spin and energy correlation functions are also determined. The comparison with an approach based on
a priori statistics reveals systematic discrepancies with the Edwards hypothesis, concerning in particular
the fall-off of correlations.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 64.60.My Metastable phases –
68.43.Fg Adsorbate structure (binding sites, geometry) – 68.43.Mn Adsorption/desorption kinetics

1 Introduction

In a great variety of systems, such as structural glasses,
spin glasses, and granular materials, the dynamics at low
temperature or high density is so slow that the system falls
out of equilibrium [1]. For long, glassy dynamics has been
described as a slow motion in a complex energy (or free
energy) landscape [2], with many valleys separated by bar-
riers. Several approaches have been proposed in order to
make this heuristic picture more precise. Valleys thus ap-
pear under various names (and with various definitions) in
different contexts: metastable states, TAP states [3], pure
states [4], inherent structures [5], quasi-states [6]. From a
dynamical viewpoint these concepts are not equivalent [7].
Metastability is indeed unambiguously defined for mean-
field models only, where metastable states have infinite
lifetimes, as barrier heights diverge with the system size.
For finite-dimensional systems with short-range interac-
tions, barrier heights and valley lifetimes are always fi-
nite at finite temperature, so that metastability becomes
a matter of time scales [8].

Once these valleys are appropriately defined, one can
estimate their number at fixed energy (or free energy) den-
sity E. This number generically grows exponentially with
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b URA 2306 of CNRS

the system size, as

N (N) ∼ exp(NSap(E)), (1.1)

where Sap(E) is the configurational entropy or complex-
ity. The subscript ‘ap’ (a priori) refers to the fact that,
when counting valleys, each of them appears with the same
weight. In this a priori ensemble, valleys are combinatori-
ally equivalent.

In contrast, a key question concerns the dynamical
weight of each individual valley. Do all the valleys play
a similar role in the dynamics? This question arises for
instance when a system is instantaneously quenched into
the glassy phase, starting from a disordered configuration.
Assuming this initial configuration is chosen at random,
does the system sample all the possible valleys with a given
final energy E with equal statistical weights, i.e., with
a uniform or flat measure, or, to the contrary, does the
size of the attraction basin of each valley really matter?
The same question is also relevant in another situation
commonly referred to as tapping [9–11]. Under tapping
a granular material continuously jumps from a blocked
configuration to a nearby one. Does the non-equilibrium
steady state thus obtained admit a statistical description
in terms of a flat ensemble of blocked configurations?

The answer to this question for the first situation (re-
laxational or aging dynamics) is positive at least in some
mean-field models, where valleys are known to be explored
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with a flat measure [6]. The concept of ergodicity, and the
resulting thermodynamical construction, therefore hold,
as in equilibrium situations, up to the replacement of
configurations by valleys. The configurational tempera-
ture Tap, defined by

1
Tap

=
dSap

dE
, (1.2)

has a thermodynamical meaning. It also coincides with
the effective temperature involved in the generalized
fluctuation-dissipation formula in the appropriate tempo-
ral regime.

Besides the mean-field geometry, another physical sit-
uation where metastable states are unambiguously de-
fined is the zero-temperature limit, where no barrier can
be crossed at all. Valleys are just blocked configurations
under the chosen dynamics. For instance, for an Ising
model with single-spin dynamics, a valley is a configura-
tion where each spin is aligned with its local field, provided
the latter is non-zero.

In the context of granular materials, Edwards [12] pro-
posed to describe the slow compaction dynamics by means
of a flat ensemble average over all the blocked configura-
tions of the grains with prescribed density. Extending the
range of application of this idea, the so-called Edwards
hypothesis consists in assuming that all the valleys with a
given energy density are equivalent. This hypothesis has
two consequences. First, the value of an observable can
be obtained by a flat average over the a priori ensem-
ble, or Edwards ensemble, of all those valleys. Second,
the temperature Tap of (1.2), also known as the Edwards
temperature, has the usual thermodynamical meaning of
a temperature.

The present paper is devoted to the analytical study of
the zero-temperature dynamics of simple one-dimensional
systems with kinetic constraints. Kinetically constrained
models have been the subject of numerous investiga-
tions [13–26]. Here we specialize to Ising chains with-
out frustration nor quenched disorder, namely paramag-
netic chains (CIC) [14–17] (Sect. 2) and ferromagnetic
chains [18–22] (Sects. 3 and 4). The common feature of
all these models is the irreversible nature of their zero-
temperature dynamics: each spin flips at most once in the
whole history of the system.

The central goal of this paper is to obtain exact results
on the statistics of the blocked configurations reached by
these systems, pursuing the efforts made by the authors
of some recent works [18–26]. Thus doing we are able to
critically revisit the questions raised above. In the deriva-
tion of these results we will take advantage of the fact
that the zero-temperature dynamics of these models can
be rephrased in terms of random sequential adsorption
(RSA) or cooperative sequential adsorption (CSA) [27],
for which analytical techniques are available in one dimen-
sion. A blocked configuration thus appears as a jammed
state of the corresponding RSA or CSA model. The
Edwards hypothesis is, in this specific context, akin to
the question raised long ago [28] whether RSA configu-
rations are equilibrated or not. Our results confirm that

the answer is negative. A more extensive discussion will
be given in Section 5.

2 Constrained Ising chain

2.1 Definition of the model

Constrained Ising chains (CIC) [14–17] are among the sim-
plest examples of kinetically constrained models [13]. Al-
though they have trivial equilibrium properties, the pres-
ence of kinetic constraints leads to slow dynamics at low
temperature, and to metastability at zero temperature.

Consider a paramagnetic Ising chain, made of indepen-
dent spins σn = ±1, submitted to a positive unit magnetic
field. This model has a Hamiltonian

H = −
∑
n

σn, (2.1)

with a unique ordered ground state, where all the spins
are up (σn = +1).

Kinetic constraints are introduced as follows. Consider
single-spin-flip dynamics with rates

W (σn → −σn) = min(1, e−2βσn)W0(σn−1, σn+1).

The first factor in the right side is the Metropolis ac-
ceptance rate, ensuring detailed balance with respect to
the Hamiltonian H at temperature T = 1/β. The second
factor imposes a kinetic constraint: the flipping rate of a
spin σn depends on its environment, i.e., on the value of
its neighbors σn−1 and σn+1. Let us make the choice [23]

W0(σn−1, σn+1) = aτn−1 + (1− a)τn+1, (2.2)

with the notation

τn =
1− σn

2
·

The parameter 0 ≤ a ≤ 1 allows to interpolate between
known limiting cases. For a = 1/2, the constraint factor is
(τn−1 +τn+1)/2, i.e., half the number of neighboring down
spins. The symmetrically constrained chain (SCIC) [14,15]
is thus obtained. For a = 0, the constraint factor is τn+1:
the spin σn can only flip if its right neighbor is down. The
right asymmetrically constrained chain (ACIC) [16,17] is
thus recovered. Similarly, the left ACIC is obtained for
a = 1.

At zero temperature, the dynamics of the CIC simpli-
fies drastically. An initially up spin (σn = +1) remains
up forever, while a down spin (σn = −1) can flip at most
once, according to stochastic rules depending on its two
neighbors: −−−→ −+− (rate 1),

−−+→ −+ + (rate a),
+−−→ + +− (rate 1− a).

(2.3)

For a finite chain of N spins, the dynamics stops after
a finite jamming time TN , which depends both on the
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initial configuration and on the history of the chain. The
jamming time will be shown to grow as TN ≈ lnN , up to
finite fluctuations given by extreme-value statistics. The
system is thus left after a finite time TN in a jammed or
blocked state. This state, which is an attractor for the
dynamics, is a spin configuration where each down spin
is isolated, i.e., surrounded by two up spins. The blocked
configuration thus obtained depends on the parameter a,
on the initial configuration of the chain, and on its whole
stochastic history.

The problem may be equivalently described as an ir-
reversible process of particle adsorption. Consider indeed
down spins as representing empty sites (◦), and up spins
as representing occupied sites (•):{

σ = −1⇐⇒ τ = 1⇐⇒ ◦,
σ = +1⇐⇒ τ = 0⇐⇒ •.

The zero-temperature dynamics of the CIC thus maps
onto a problem of particle adsorption, where individual
particles (monomers) are irreversibly deposited accord-
ing to: ◦ ◦ ◦ → ◦ • ◦ (rate 1),

◦ ◦ • → ◦ • • (rate a),
• ◦ ◦ → • • ◦ (rate 1− a).

The deposition rate at site n depends on the occupation
state of both neighboring sites. We are thus facing a coop-
erative sequential adsorption (CSA) model [27]. The limit
(jamming) coverage of this model is related to the mean
magnetization per spin M(∞) in the blocked configura-
tions by

P∞(•) = 1− 〈τ〉∞ =
1 +M(∞)

2
·

In the following, we will use the language of spins, magne-
tization, spin correlations, and so on, leaving the picture
of particle deposition for illustrative purposes only.

2.2 A priori statistics

We have shown that the attractors of the zero-temperature
dynamics of the CIC, for any value of the parameter a, are
the spin configurations where each down spin is isolated,
i.e., surrounded by two up spins.

A natural statistical description of these attractors is
provided by the a priori ensemble, or Edwards ensemble,
as explained in the Introduction, where all the blocked
spin configurations are taken with equal weights.

For a finite chain of N spins, consider the restricted
ensemble of blocked configurations for which exactly n
spins are down. Their magnetization M is such that
NM = N − 2n, with 0 ≤ n ≤ N/2, hence 0 ≤ M ≤ 1.
The number of such configurations reads

N (N,n) =
(
N − n+ 1

n

)
. (2.4)

Indeed this is the number of ways of inserting n down spins
in the N −n+ 1 spaces made available by the presence of
N−n up spins, with at most one down spin per space. This
number grows exponentially, according to (1.1), where the
a priori entropy reads [23,25,18]

Sap(M) = −M ln(2M) +
1 +M

2
ln(1 +M)

− 1−M
2

ln(1−M). (2.5)

One can also consider the full (or unrestricted) ensem-
ble of all the blocked configurations, irrespective of their
magnetization. The number N (N) of such configurations
can be determined as follows. For a chain of N ≥ 3 spins,
a configuration either ends with (+−) (there are N (N−2)
such configurations) or with (+) (there are N (N − 1)
such configurations). We thus obtain the recursion rela-
tion N (N) = N (N − 1) + N (N − 2), with N (1) = 2,
N (2) = 3, hence

N (N) = FN+2,

where FN are the Fibonacci numbers. This expression is
also equal to the sum of (2.4) for n ranging from 0 to N/2.
It grows as N (N) ∼ exp(NS?ap), with

S?ap = lnΦ = 0.481212, (2.6)

where Φ = (1+
√

5)/2 is the golden mean. The result (2.6)
is the maximum value of the function Sap(M) (2.5). This
maximum is reached for

M? =
1√
5

= 0.447214, (2.7)

which is therefore the typical a priori magnetization of a
blocked configuration.

The distribution of the number n of down spins in the
a priori ensemble is given by

Pn =
N (N,n)
N (N)

·

For a large sample (N � 1), the probability density of
the magnetization M is therefore given by an exponential
estimate of the form

f(M) ∼ exp(−N Σap(M)), (2.8)

with

Σap(M) = S?ap − Sap(M). (2.9)

The result (2.8) has the form of large-deviation estimates
in probability theory, which hold e.g. for the arithmetic
mean of N independent random variables. The large-
deviation function (or entropy function) Σap(M) will be
plotted in Figure 4. It vanishes quadratically near M =
M? as

Σap(M) ≈ c (M −M?)2
, c =

5
√

5
8
·



366 The European Physical Journal B

The bulk of the a priori distribution of M is therefore
asymptotically a narrow Gaussian around M?, with a
scaled variance given by N VarM ≈ 1/(2c) = 4

√
5/25 =

0.357771.
The a priori entropy can alternatively be evaluated by

the transfer-matrix method [29]. For a finite chain of N
spins, we introduce the characteristic function of the mag-
netization

ZN (β) =
∑
C

eβNM(C),

where the sum runs over all the blocked configurations C.
Note that NM(C) is the opposite of the total energy of
the configuration, according to the Hamiltonian (2.1), so
that ZN (β) coincides with the usual partition function of
the model, at a fictitious inverse temperature β.

The partition functions Z±N of a finite chain of N spins,
labeled by the prescribed value σN = ±1 of the last spin,
obey the recursion(

Z+
N+1

Z−N+1

)
= T

(
Z+
N

Z−N

)
,

where the 2× 2 transfer matrix

T =
(

eβ eβ

e−β 0

)
has eigenvalues

λ±(β) =
eβ ±

√
4 + e2β

2
·

The entropy Sap(M) is then given by a Legendre trans-
form. We have indeed

ZN (β) ∼
∫

eN(Sap(M)+βM) dM ∼ eN lnλ+(β).

Evaluating the integral by the steepest-descent method
yields the ‘thermodynamical’ relationships

lnλ+(β)− Sap(M) = βM, M =
d lnλ+

dβ
, β = −dSap

dM
,

(2.10)

which yield in the present case

M =
eβ√

4 + e2β
, eβ =

2M√
1−M2

,

and allow to recover (2.5).
The spin correlation function Cn = 〈σ0σn〉 can also be

evaluated in the a priori ensemble at fixed magnetization
by the transfer-matrix method [29]. We have, for n ≥ 0 in
the bulk of an infinitely long chain,

Cn =
〈L+|ST nS|R+〉

λn+

= (〈L+|S|R+〉)2 + 〈L+|S|R−〉〈L−|S|R+〉
(
λ−
λ+

)n
·

In this expression, S = diag(+1,−1) is the spin operator,
while

〈L±| =
1

λ2
± + 1

(
λ± eβ

)
, |R±〉 =

(
eβλ±

1

)
are the left and right eigenvectors of T associated with the
eigenvalues λ±. We have consistently M = 〈L+|S|R+〉.
After some algebra we obtain the following expression,
involving only the magnetization M [18]:

Cconn
n = Cn −M2 = (1−M2)

(
−1−M

1 +M

)n
· (2.11)

The connected correlation function thus exhibits an expo-
nential decay, modulated by an oscillating sign.

The full ensemble of blocked configurations is obtained
by setting β = 0 in the above results, which indeed corre-
sponds to taking a flat average over all blocked configura-
tions. This prescription amounts to replacing the magne-
tization M by its typical value M? (2.7). We thus obtain
in particular

Cconn
n = Cn −

1
5

=
4
5

(
− 1
Φ2

)n
· (2.12)

We end up by mentioning that the blocked spin con-
figurations considered so far are the degenerate ground
states of the antiferromagnetic Ising chain in a constant
magnetic field h = 2J > 0 [30], whose Hamiltonian reads

H = J
∑
n

σnσn+1 − 2J
∑
n

σn.

As a consequence, the above expressions are exact results
for the latter model at equilibrium at zero temperature.
This is one of the simplest models with a non-zero entropy
at zero temperature, given by (2.6).

2.3 Dynamics of cluster densities and magnetization

We now turn to the exact analysis of the zero-temperature
dynamics of the CIC, starting with the mean cluster den-
sities and magnetization.

We consider an uncorrelated magnetized initial state,
given by{

σn(0) = −1, τn(0) = 1 (◦) with prob. p,
σn(0) = +1, τn(0) = 0 (•) with prob. 1− p, (2.13)

so that the mean initial magnetization reads M(0) =
1− 2p.

For p ≤ 1/2, the initial state (2.13) is the equilibrium
state of the Ising chain with Hamiltonian (2.1) at inverse
temperature

β0 =
1
2

ln
1− p
p
· (2.14)

In particular, a random (unmagnetized) initial configura-
tion, i.e., p = 1/2, corresponds to infinite temperature,
i.e., β0 = 0.



G. De Smedt et al.: Jamming, freezing and metastability in one-dimensional spin systems 367

It is a common feature of one-dimensional RSA and
similar problems [27] that the densities of certain patterns,
including active clusters, obey closed rate equations. Con-
sider clusters of exactly ` ≥ 1 consecutive down spins.
Their density per unit length at time t reads

p`(t) = 〈(1− τ0)τ1 . . . τ`(1− τ`+1)〉t = Pt

• ◦ · · · ◦︸ ︷︷ ︸
`

•

 ,

(2.15)

and the mean magnetization of the chain is given by

M(t) = 1− 2
∑
`≥1

` p`(t). (2.16)

Because zero-temperature dynamics is fully irreversible,
the densities p`(t) obey rate equations, which can be de-
rived as follows. Clusters of length ` = 1 are inactive.
Consider a cluster of length ` ≥ 2, renumbering its sites
as n = 1, . . . , `. The spin σn can flip from down to up, at
a rate given by (2.3), thus generating one or two smaller
clusters of the following length

n = 1 (rate 1− a),
one cluster: `1 = `− 1,

2 ≤ n ≤ `− 1 (rate 1),
two clusters: `1 = n− 1, `2 = `− n,

n = ` (rate a),
one cluster: `1 = `− 1.

(2.17)

Gathering the contributions of all these events, we ob-
tain the rate equations

dp`(t)
dt

= −(`− 1)p`(t) + p`+1(t) + 2
∑
k≥`+2

pk(t) (2.18)

for ` ≥ 1, irrespective of the value of the asymmetry pa-
rameter a. The initial state (2.13) yields p`(0) = (1−p)2p`.

A simple way of solving the rate equations (2.18) con-
sists in making the ansatz

p`(t) = a(t) z(t)` (2.19)

for ` ≥ 1. We obtain successively dz(t)/dt = −z(t), with
z(0) = p, hence

z(t) = pe−t, (2.20)

and da(t)/dt = a(t)(1 + z(t)2)/(1 − z(t)), with a(0) =
(1− p)2, hence

a(t) = et(1− pe−t)2 exp(p(e−t − 1)),

so that finally

p`(t) = (1− pe−t)2 exp(p(e−t − 1)) p`e−(`−1)t. (2.21)

As expected, only inactive clusters of length ` = 1 survive
in the final states, and their density reads

p1(∞) = pe−p.

Table 1. Mean value and limit scaled variance of the final
energy: comparison of the exact dynamical results for a ran-
dom initial condition (p = 1/2) with the prediction of the full
a priori ensemble.

Model
E

dynamical
E?

a priori
N VarE

dynamical
N VarE
a priori

CIC −0.393469 −0.447214 0.258456 0.357771
Glauber −0.632121 −0.447214 0.406006 0.357771

Kawasaki −0.274087 −0.236840 0.459839 0.527638

Equation (2.16) yields

M(t) = 1− 2p exp(p(e−t − 1)), (2.22)

and especially

M(∞) = 1− 2pe−p. (2.23)

The mean final magnetization of the blocked states
reached by the dynamics thus depends on the parame-
ter p characterizing the initial state. This non-trivial de-
pendence demonstrates that the dynamics is not ergodic.
For an initial state close to the ground-state (p → 0, i.e.,
M(0) → 1), the behavior M(∞) ≈ M(0) + 2p2 is eas-
ily explained in terms of clusters of two down spins: the
density of these clusters scales as p2, and only one of the
two spins will flip. For a random (unmagnetized) initial
configuration (p = 1/2, i.e., M(0) = 0), we have

M(∞)p=1/2 = 1− e−1/2 = 0.393469. (2.24)

As this number is the final magnetization of a typical ini-
tial state, it is natural to compare it to the prediction (2.7)
of the a priori ensemble. This comparison will be pre-
sented in Table 1. Finally, for the ordered initial state
where all spins are down (p = 1, i.e., M(0) = −1), we have
the smallest possible value of the final magnetization:

M(∞)p=1 = 1− 2e−1 = 0.264241. (2.25)

Figure 1 shows a plot of the final energy E(∞) = −M(∞)
against the initial one, E(0) = −M(0), for the present
model, as well as for the ferromagnetic chain with con-
strained Glauber and Kawasaki dynamics (see Sects. 3
and 4).

To close up, we present an analysis of the distribution
of the jamming time TN of a large but finite system of N
spins, a question which does not seem to have been con-
sidered in previous works on RSA. Equation (2.21) shows
that the late stages of the dynamics are governed by an
exponentially small density of surviving clusters made of
two down spins, p2(t) ≈ αe−t, with α = p2e−p. The dy-
namics can therefore be effectively described by a collec-
tion of αN such clusters, each cluster decaying exponen-
tially with unit rate, when a down spin flips. The jamming
time TN is the largest of the decay times of those clusters.
For a large sample, it is therefore distributed according to
extreme-value statistics [31]. Setting

TN = ln(αN) +XN , (2.26)
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Fig. 1. Plot of the final energy E(∞) against the initial en-
ergy E(0). Full line: CIC (2.23). Dashed line: ferromagnetic
chain with constrained Glauber dynamics (3.7). Long-dashed
line: ferromagnetic chain with constrained Kawasaki dynam-
ics (4.5).

we find that the fluctuation XN remains of order unity,
and that it is asymptotically distributed according to the
Gumbel law

f(X) = exp
(
−X − e−X

)
. (2.27)

We have checked this prediction by a numerical simula-
tion. Figure 2 shows a histogram of the observed jamming
time TN for 106 samples of N = 1000 spins, starting with
a random initial configuration. The bin size is ∆T = 1/10.
An excellent agreement is found with the limit law (2.27),
with p = 1/2, hence α = e−1/2/4 = 0.151633.

2.4 Spin correlations

The time-dependent spin correlation function reads

Cn(t) = 〈σ0σn〉t = 〈(1− 2τ0)(1− 2τn)〉t
= 1− 4c1(t) + 4d1,n−1,1(t), (2.28)

where we have introduced the one-cluster function cn(t)
and the two-cluster function dm,k,n(t), defined as

cn(t) = 〈τ1 . . . τn〉t = Pt

◦ · · · ◦︸ ︷︷ ︸
n

 , (2.29)

dm,k,n(t) = 〈τ1 . . . τm τm+k+1 . . . τm+k+n〉t

= Pt

◦ · · · ◦︸ ︷︷ ︸
m

· · ·︸︷︷︸
k

◦ · · · ◦︸ ︷︷ ︸
n

 . (2.30)

The one-cluster function is the probability that the
sites 1, . . . , n belong to a cluster of at least n consecutive
down spins. It is therefore directly related to pn(t) defined
in (2.15) by

pn(t) = cn(t)− 2cn+1(t) + cn+2(t). (2.31)

Fig. 2. Distribution of the jamming time TN of CIC samples
of N = 1000 spins, against XN defined in (2.26). Histogram:
numerical data (p = 1/2). Thick line: limit Gumbel law (2.27).

Equation (2.19) then yields

cn(t) = A(t) z(t)n, (2.32)

with (2.20) and

A(t) =
a(t)

(1− pe−t)2
= et exp(p(e−t − 1)). (2.33)

This result can be alternatively recovered by deriving
rate equations for the one-cluster function itself. As a
consequence of (2.2), each variable τ2, . . . , τn−1 entering
the definition (2.29) can flip from 1 to 0 with rate cn(t)
per unit time, while the rate for the first variable τ1 is
acn(t)+(1−a)cn+1(t), and the rate for the last variable τn
is acn+1(t)+ (1−a)cn(t). Gathering all the contributions,
we obtain the equation

dcn(t)
dt

= −(n− 1)cn(t)− cn+1(t), (2.34)

whose solution coincides with (2.32, 2.33).
A similar analysis yields the following rate equations

for the two-cluster function:

ddm,k,n(t)
dt

= −(m+ n− 2)dm,k,n(t)

−a(dm+1,k,n(t) + dm,k−1,n+1(t))
−(1− a)(dm+1,k−1,n(t) + dm,k,n+1(t))

(2.35)

for m, k, n ≥ 1, with initial conditions dm,k,n(0) = pm+n,
and boundary values dm,0,n(t) = cm+n(t). The rate equa-
tions (2.35) are solved by the ansatz

dm,k,n(t) = Bk(t) z(t)m+n, (2.36)

provided the amplitudes Bk(t) obey

dBk(t)
dt

= (2− z(t))Bk(t)− z(t)Bk−1(t) (2.37)

for k ≥ 1, irrespective of the value of a, with the initial
condition Bk(0) = 1, and the boundary value B0(t) =
A(t) (2.33).



G. De Smedt et al.: Jamming, freezing and metastability in one-dimensional spin systems 369

In order to solve (2.37), we introduce the generating
series

B(x, t) =
∑
k≥1

Bk(t)xk, (2.38)

which obeys the differential equation

dB(x, t)
dt

= (2− (x+ 1)z(t))B(x, t)− xz(t)A(t),

considering x as a parameter, with initial condition
B(x, 0) = x/(1−x). This equation can be solved by ‘vary-
ing the constant’:

B(x, t) = e2t exp(p(e−t − 1))

×
[(

1
px

+
1

1− x

)
exp(px(e−t − 1))− 1

px
− e−t

]
.

(2.39)

Inserting (2.32) and (2.36) into (2.28), we obtain

Cn(t) = 1− 4p exp(p(e−t − 1)) + 4p2e−2tBn−1(t).

Finally, expanding (2.39) and using (2.22), we obtain the
expression of the connected spin correlation function:

Cconn
n (t) = Cn(t)−M(t)2

= 4p exp(p(e−t − 1))

×

(1− p)(p(e−t − 1))n

n!
− p

∑
m≥n+1

(p(e−t − 1))m

m!

 ·
As a consequence, in the blocked states, the correlation
function reads

Cconn
n (∞) = Cn(∞)−M(∞)2 = 4pe−p

×

(1− p)(−p)n
n!

− p
∑

m≥n+1

(−p)m
m!

 · (2.40)

The first term in the above expressions is the lead-
ing one, implying that the connected correlation func-
tion has a factorial asymptotic decay of the form (p(1 −
e−t))n/n!, modulated by an oscillating sign, for any
value of p and any time t. This super-exponential fall-
off is a characteristic feature of irreversible processes such
as RSA [27]. This behavior is entirely missed by the
a priori approach (2.11, 2.12), where correlations fall off
exponentially, as they generically do in equilibrium sys-
tems. Figure 3 shows a logarithmic plot of (−1)nCconn

n (∞)
against n, for a random initial configuration (p = 1/2), to-
gether with both predictions of the a priori approach, i.e.,
the full ensemble (2.12), and the restricted ensemble (2.11)
where the exact magnetization (2.24) is imposed. Both
predictions appear as straight lines on the plot. The exact
value of Cconn

1 (∞) is correctly reproduced in the restricted
a priori ensemble.

Fig. 3. Connected spin correlation function in the final states
of the CIC. Full (open) symbols show positive (negative) cor-
relations. Circles and full line: logarithm of (−1)n times the
connected correlation Cconn

n (∞) (2.40) for p = 1/2, against n.
Squares and dashed line: prediction (2.11, 2.24) of the re-
stricted a priori ensemble. Triangles and dashed line: predic-
tion (2.12) of the full a priori ensemble.

2.5 Distribution of final magnetization and dynamical
entropy

We finally determine the full distribution of the number of
spin flips and of the final magnetization, for a given finite
sample. This problem was tackled long ago by a somewhat
similar approach [32] in the case of dimer deposition, with-
out consideration of the dynamical entropy, though.

Single active cluster

We consider first the case of a single active cluster of size
` ≥ 2, with free boundary conditions, with all spins being
initially down. In the language of deposition, this corre-
sponds to an initially empty cluster. We are interested in
the distribution of the number ν` of spin flips (i.e., de-
posited particles) during the history of this cluster, until
it reaches a blocked configuration. The final magnetiza-
tion M` of the cluster is such that

`M` =
∑̀
n=1

σn(∞) = 2ν` − `.

Because of the irreversible character of the dynamics,
every spin flip replaces the cluster where it takes place
by one or two smaller clusters, according to (2.17). In the
generic case, two clusters of lengths `1 and `2 are gener-
ated, and their subsequent histories are independent. We
have therefore

ν` = 1 + ν`1 + ν`2 , (2.41)

where ν`1 and ν`2 are independent random variables,
whose distribution is to be determined, while `1 = n − 1
and `2 = `− n, with the breaking point n being uniform
in the range 2 ≤ n ≤ `− 1. For n = 1 or n = `, only one
cluster is generated, and (2.41) is changed accordingly. Fi-
nally, we set ν0 = 0, which necessarily holds, and ν1 = 0,
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which contains the gist of the kinetic constraint in the CIC
model. Let

φ`(λ) = 〈eλν`〉 (2.42)

be the characteristic function of the distribution of ν`.
Equation (2.41) implies

(`− 1)φ`(λ) = eλ
`−1∑
k=1

φk(λ)φ`−k−1(λ)

for ` ≥ 2, with φ0(λ) = φ1(λ) = 1. These quadratic recur-
sion relations can be solved by introducing the generating
series

Φ(x, λ) =
∑
`≥0

φ`(λ)x`, (2.43)

which obeys

x
dΦ(x, λ)

dx
= (Φ(x, λ) − 1)(1 + xeλΦ(x, λ)), (2.44)

with Φ(x, λ) = 1 + x+ · · · as x→ 0.
The quadratic differential equation (2.44) has an obvi-

ous solution Φ(x, λ) = 1. Setting Φ(x, λ) = 1 + 1/u(x, λ),
we obtain a linear equation

x
du(x, λ)

dx
+ (1 + xeλ)u(x, λ) = −xeλ,

which can be solved by ‘varying the constant’. This yields

Φ(x, λ) =
exp(xeλ) + eλ − 1

(1− xeλ) exp(xeλ) + eλ − 1
· (2.45)

This expression formally contains the distribution of the
number ν` of spin flips.

First, by expanding (2.45) around λ = 0, we obtain
generating series for the successive moments of ν`. The
first of these series,∑

`≥0

〈ν`〉x` =
x(1− e−x)

(1− x)2
,

can be inverted explicitly, yielding

〈ν`〉 = (1− e−1)`− e−1 + (`+ 1)
∑

m≥`+2

(−1)m

m!
· (2.46)

The mean number of spin flips therefore grows linearly
with the cluster size `, with a coefficient F1 = 1− e−1 =
0.632120, in agreement with (2.25). The constant − e−1

can be viewed as the contribution of the free ends of the
cluster, while the last term falls off factorially, with an
oscillating sign, as (−1)`/(`+ 1)!, just like the connected
spin correlation (2.40) for p = 1.

Then, by inverting the generating series (2.43), we ob-
tain the exponential estimate

φ`(λ) ∼ e`F (λ), (2.47)

where xc(λ) = exp(−F (λ)) is the zero of the denominator
of (2.45). As a consequence, all the cumulants of ν` grow
linearly with the size ` of the cluster, as

〈〈νk` 〉〉 ≈ Fk`,

with

F (λ) =
∑
k≥1

Fkλ
k

k!
, Fk =

(
dkF
dλk

)
λ=0

·

We recover the above result 〈ν`〉 ≈ F1`, whereas Var ν` ≈
F2`, with F2 = 3e−2 − e−1 = 0.038126. The bulk of the
distribution of ν` is therefore a Gaussian of the form

P (ν`) ≈ (2πF2`)−1/2 exp
(
− (ν` − F1`)2

2F2`

)
· (2.48)

In order to investigate the tails of the distribution of ν`
for ` large, we set

ξ =
ν`
`

=
1 +M`

2
·

An inverse Laplace transform of (2.42), using (2.47), yields

P (ν`) ∼
∫

dλ
2πi

e`(F (λ)−λξ).

Evaluating this integral by the saddle-point method, we
obtain an exponential estimate similar to (2.8):

P (ν`) ∼ exp(−`Σ(ξ)), (2.49)

where the functions F (λ) and Σ(ξ) are related to each
other by a Legendre transform:

F (λ) +Σ(ξ) = λξ, λ =
dΣ
dξ

, ξ =
dF
dλ
·

The function Σ(ξ) is the large-deviation function (or en-
tropy function) of the quantity ν`. This is a positive, con-
vex function of ξ, which vanishes quadratically around
〈ξ〉 = F1, as

Σ(ξ) ≈ (ξ − F1)2

2F2
,

in agreement with the Gaussian law (2.48).
Coming back to the language of the magnetization M ,

the above functions have the following parametric form,
in terms of z = xc(λ)eλ:

F = ln(1− (1− z)ez)− ln z,
λ = ln(1− (1− z)ez),

Σ = ln z − 1− (1− z)ez

z2ez
ln(1− (1− z)ez),

M = 1− 2
1− (1− z)ez

z2ez
· (2.50)
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Uncorrelated initial state

We now investigate the distribution of the final magneti-
zation MN for a finite chain of N spins, with an initial
state of the form (2.13). This magnetization is given by

NMN = 2ν +NMN(0) = 2ν +
N∑
n=1

σn(0), (2.51)

where MN (0) is the initial magnetization and ν is the
number of spin flips during the history of the system. The
final magnetization MN is therefore random in two re-
spects, as it depends both on the initial spin configuration
and on the numbers of spin flips during the history of each
cluster.

We again introduce the characteristic function

ψN (λ) = 〈exp(λNMN )〉 =

〈
exp

(
2λν + λ

N∑
n=1

σn(0)

)〉
,

(2.52)

as well as the generating series

Ψ(x, λ) =
∑
N≥1

ψN (λ)xN .

The brackets in the right-hand side of (2.52) involve:

(i) averaging over stochastic histories with a fixed initial
configuration;

(ii) averaging over the distribution (2.13) of initial config-
urations.

The outcome after (i) is that the right-hand side
of (2.52) is a multiplicative cluster quantity of the type
investigated in Appendix A, where the contributions of
clusters of up and down spins read

fL = eλL, gL = e−λLφL(2λ). (2.53)

Step (ii) can now be performed. The generating series cor-
responding to (2.53) are

f(x) =
xeλ

1− xeλ
, g(x) = Φ(xe−λ, 2λ)− 1. (2.54)

Using (2.45) and (A.1), we obtain

Ψ(x, λ) =
xeλ

(
exp(pxeλ)+(1− p)(e2λ−1)

)
(1− xeλ) exp(pxeλ)+(1−(1−p)xeλ)(e2λ−1)

·

(2.55)

This expression provides the distribution of the final
magnetization, for any system size N and any value of the
parameter p characterizing the initial state.

By expanding (2.55) around λ = 0, we obtain gener-
ating series for the moments of NMN . The first of these
series yields an expression similar to (2.46) for N〈MN 〉,
with a leading term, linear in N , in agreement with the
expression (2.23) of M(∞), a constant boundary term,

Fig. 4. Full line: plot of the dynamical entropy of the CIC,
given by Σ1/2(M) (2.56), against magnetization M . Dashed
line: prediction (2.5), (2.9) of the a priori approach.

and an oscillating, factorially decaying correction. Simi-
larly, we find

N VarM ≈ 4pe−p((2p2 − p+ 2)e−p − 1).

For a random initial configuration (p = 1/2), we have
therefore N VarM ≈ 4e−1 − 2e−1/2 = 0.258456.

Table 1 provides a comparison between exact dynam-
ical results for a random initial state (p = 1/2) and pre-
diction of the full a priori ensemble, concerning the main
characteristics (mean value and scaled variance) of the fi-
nal energy of the three models considered in this work.

The tails of the distribution ofMN are again described
by an exponential estimate of the form (2.8):

P (MN ) ∼ exp(−N Σp(MN )),

where the large-deviation function Σp(M) reads, in para-
metric form:

Σp = ln z − (1− (1− p)z)(1− (1− p)z − (1− z)epz)
pz2(2− p− (1− p)z)epz

× ln
1− (1− p)z − (1− z)epz

1− (1− p)z ,

M = 1− 2
(1− (1− p)z)(1− (1− p)z − (1− z)epz)

pz2(2− p− (1− p)z)epz
·

(2.56)

This function has finite limits

Σp(0) = −1
2

ln
p(2− p)

2
, Σp(1) = − ln(1− p),

at the minimum magnetization M = 0, corresponding to
z = 0, and at the ground-state magnetization M = 1, cor-
responding to z = 1/(1−p). Furthermore, the result (2.50)
is recovered by setting p = 1 in (2.56), as it should be.

Figure 4 shows a plot of the dynamical entropy,
defined as being the large-deviation function Σp(M)
of (2.56) for a random initial configuration, i.e., p =
1/2, against the magnetization M of the final state. The



372 The European Physical Journal B

endpoint values read Σ1/2(0) = ln(8/3)/2 = 0.490415
and Σ1/2(1) = ln 2 = 0.693147. The prediction (2.9)
of the a priori approach is plotted for comparison. The
functions Σ1/2(M) and Σap(M) respectively vanish for
M(∞) (2.24) and M? (2.7). These numbers are listed in
Table 1, together with the corresponding limit scaled vari-
ances.

3 Constrained Glauber dynamics

3.1 Definition of the model

We now consider a ferromagnetic Ising chain with Glauber
dynamics (non-conserved order parameter) in the presence
of kinetic constraints. The Hamiltonian of the chain, with
unit exchange constant, reads

H = −
∑
n

σnσn+1 = −
∑
n

sn, (3.1)

where we have introduced the energy (bond) variables
sn = σnσn+1.

We consider single spin-flip (Glauber) dynamics, as-
suming that the flipping rate only depends on the energy
difference between the configurations after and before the
proposed move, i.e.,

W (σn → −σn) =WδH,

with

δH = 2(σn−1 + σn+1)σn = 2(sn−1 + sn) ∈ {−4, 0, 4}·

The requirement that the dynamics obeys detailed balance
with respect to the Hamiltonian (3.1) at temperature T =
1/β yields a single condition:

W4

W−4
= e−4β .

Choosing time units such that W−4 = 1, we have W4 =
e−4β . We restrict ourselves to zero-temperature dynamics,
so that W4 = 0. The rate W0, corresponding to diffusive
rearrangements at constant energy, remains a free param-
eter. The zero-temperature limits of the Metropolis and
heat-bath rules respectively correspond to W0 = 1 and
W0 = 1/2. Here we choose

W0 = 0, (3.2)

so that only spin flips which lower the energy are allowed.
The condition (3.2) defines the constrained Glauber dy-
namics already considered in [18,19]. The possible spin
moves are flips of isolated spins:

−+− → −−−, +−+→ + + +. (3.3)

Each move suppresses two consecutive unsatisfied bonds:
sn−1 = sn = −1 → sn−1 = sn = +1. The system even-
tually reaches a blocked state, where there is no isolated

spin. Equivalently, each unsatisfied bond (or domain wall)
is isolated. Our aim is again to provide a statistical de-
scription of the blocked states reached in this way.

We recast the problem in terms of deposition, where
empty sites represent unsatisfied bonds, while occupied
sites represent satisfied bonds:{

sn = σnσn+1 = −1⇐⇒ ◦,
sn = σnσn+1 = +1⇐⇒ •. (3.4)

The moves (3.3) read

◦◦ → ••,

so that the dynamics is equivalent to the RSA of dimers,
considered long ago [33,32].

The blocked states are the spin configurations where
unsatisfied bonds are isolated. These blocked configura-
tions are therefore formally equivalent to those of the CIC
of Section 2, up to the replacement of the spins σn by the
energy variables sn. The Hamiltonians (2.1) and (3.1) are
also equivalent, up to the replacement σn → sn. As a con-
sequence, the entropy Sap(E) of the a priori ensemble at
fixed energy E is still given by (2.5), up to the replacement
of M by −E.

3.2 Dynamics of cluster densities and energy

We again consider an initial state similar to (2.13), with
σ0(0) = ±1 at random, while each energy variable is
drawn from the binary distribution{

sn(0) = −1 (◦) with prob. p,
sn(0) = +1 (•) with prob. 1− p. (3.5)

The parameter p is related to the initial energy E(0) =
−1 + 2p, and (2.14) still holds.

The dynamics of the cluster densities and energy can
be investigated by the method of Section 2.3. The den-
sities p`(t) of clusters of exactly ` consecutive unsatis-
fied bonds (empty sites) obey linear equations similar
to (2.18):

dp`(t)
dt

= −(`− 1)p`(t) + 2
∑
k≥`+2

pk(t)

for ` ≥ 1, with p`(0) = (1− p)2p`, and the energy reads

E(t) = −1 + 2
∑
`≥1

` p`(t). (3.6)

The ansatz (2.19) again holds, yielding the solution

p`(t) = (1− pe−t)2 exp(2p(e−t − 1)) p`e−(`−1)t

and

E(t) = −1 + 2p exp(2p(e−t − 1)).
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Again, only inactive clusters of length ` = 1 survive in the
blocked states:

p1(∞) = pe−2p,

so that

E(∞) = −1 + 2pe−2p. (3.7)

This result [18,19] was shown in Figure 1.
For an initial state close to the ferromagnetic ground-

state (E(0) → −1, i.e., p → 0), the behavior E(∞) ≈
E(0) − 4p2 is easily explained in terms of clusters of two
unsatisfied bonds. The energy of blocked states then in-
creases monotonically against p, up to the maximum value

E(∞)p=1/2 = −1 + e−1 = −0.632121,

corresponding to a random initial configuration (p = 1/2,
i.e., E(0) = 0), and then decreases monotonically against
p, down to the value

E(∞)p=1 = −1 + 2e−2 = −0.729329,

corresponding to the antiferromagnetically ordered initial
state (p = 1).

3.3 Spin and energy correlations

In the present context, it is natural to consider the spin
(site) and energy (bond) correlation functions

Cn(t) = 〈σ0σn〉t, Γn(t) = 〈s0sn〉t = 〈σ0σ1σnσn+1〉t.

The energy correlation function Γn(t) can be evalu-
ated analytically, using the method of Section 2.4. We
introduce variables τn = (1 − sn)/2, and consider the
one-cluster function cn(t) and the two-cluster function
dm,k,n(t), defined in (2.29) and (2.30). These functions
obey rate equations similar to (2.34) and (2.35):

dcn(t)
dt

= −(n− 1)cn(t)− 2cn+1(t),

ddm,k,n(t)
dt

= −(m+ n− 2)dm,k,n(t)− dm+1,k,n(t)

−dm+1,k−1,n(t)− dm,k−1,n+1(t)
−dm,k,n+1(t).

After some algebra we are left with the following
expression for the connected energy correlation func-
tion Γ conn

n (∞):

Γ conn
n (∞) = Γn(∞)−E(∞)2 = 2pe−2p

×

(1− 2p)
(−2p)n

n!
− 2p

∑
m≥n+1

(−2p)m

m!

 , (3.8)

which closely resembles (2.40). For p 6= 1/2, the first term
is leading, hence Γ conn

n (∞) ∼ (−2p)n/n!. For p = 1/2,

Fig. 5. Spin and energy correlation function in the blocked
states of the ferromagnetic chain with constrained Glauber dy-
namics. Full (open) symbols show positive (negative) correla-
tions. Circles and full line: logarithm of (−1)n times the con-
nected energy correlation Γ conn

n (∞) (3.8) for p = 1/2, against
n. Triangles and full line: logarithm of the full spin correlation
function Cn(∞), against n, measured in a numerical simula-
tion. Dashed line: logarithm of asymptotic behavior 1/(n+1)!,
up to a multiplicative constant, meant as a guide to the eye.

Γ conn
n (∞) ∼ (−1)n/(n + 1)!. Figure 5 shows a loga-

rithmic plot of both correlation functions, against n,
for a random initial configuration (p = 1/2). The cir-
cles show (−1)n Γ conn

n (∞), as given by the analytical re-
sult (3.8). The triangles show the full spin correlation func-
tion Cn(∞), measured in a numerical simulation. For each
sample, starting in a random initial configuration, the con-
strained dynamics is run until a blocked state is reached.
The correlation function Cn(∞) is found to be positive
and to decay monotonically to zero as a function of the
distance n. The data shown correspond to a total of 1010

blocked spins. Both correlations are observed to fall off as
1/(n+ 1)!

3.4 Distribution of final energy and dynamical entropy

We now investigate the distribution of the number of spin
flips and of the final energy, using the method of Sec-
tion 2.5.

We consider first the case of a single cluster of size
` ≥ 2, whose initial configuration is antiferromagnetically
ordered, i.e., made of unsatisfied bonds. Let ν` be the
number of spin flips during the history of this cluster.
Equation (2.41) is replaced by

ν` = 2 + ν`1 + ν`2 ,

where `1 = n − 1 and `2 = ` − n − 1, and the breaking
point n is uniform in the range 1 ≤ n ≤ `−1. Hence equa-
tion (2.44) for the generating series Φ(x, λ) is replaced by

x
dΦ(x, λ)

dx
=
(
xeλΦ(x, λ)

)2
+ Φ(x, λ) − 1. (3.9)

This is a Riccati equation, which can be solved by lin-
earization [34]. Setting

1
Φ(x, λ)

= 1− x

u(x, λ)
du(x, λ)

dx
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yields

d2u(x, λ)
dx2

= e2λu(x, λ),

so that a basis of solutions reads exp(±xeλ). We thus ob-
tain the closed-form expression

Φ(x, λ) =
(eλ + 1) exp(2xeλ) + eλ − 1

(eλ+1)(1−xeλ) exp(2xeλ)+(eλ − 1)(1+xeλ)
·

We now consider the final total energy NEN of a fi-
nite chain of N spins, with the initial state (3.5). Equa-
tion (2.51) is replaced by

NEN = NEN (0)− 2ν,

where EN (0) is the initial energy and ν is the number of
spin flips. Equations (2.54) and (2.55) are replaced by

f(x) =
xe−λ

1− xe−λ
, g(x) = Φ(xeλ,−2λ)− 1

and

Ψ(x, λ) =

x
(
(e2λ+1) exp(2pxe−λ)+(2p−1)(e2λ−1)

)
(e2λ+1)(eλ−x) exp(2pxe−λ)+(−eλ + (1−2p)x)(e2λ−1)

·

This last expression contains the distribution of the
final energy of a system of size N , as a function of the
parameter p characterizing the initial state. In particular,
the mean energy is found to agree with the expression (3.7)
of E(∞), while its scaled variance reads

N VarE ≈ 4p(4p2 − p+ 1)e−4p.

For a random initial configuration (p = 1/2), we have
therefore N VarE ≈ 3e−2 = 0.406006.

The tails of the distribution of EN are again given by
an estimate similar to (2.8):

P (EN ) ∼ exp(−N Σp(EN )),

where the large-deviation function Σp(E) reads, in para-
metric form:

Σp = ln z +
(1 + (2p− 1)z)2 − (z − 1)2e4pz

4pz2e2pz(2(1− p) + (2p− 1)z)

× ln
1 + (2p− 1)z + (1− z)e2pz

1 + (2p− 1)z − (1− z)e2pz
,

E = −1 +
(1 + (2p− 1)z)2 − (z − 1)2e4pz

2pz2e2pz(2(1− p) + (2p− 1)z)
· (3.10)

This function has finite limits

Σp(−1) = ln zc(p), Σp(0) = −1
2

ln(p(1− p)),

at the ground-state energy E = −1, corresponding to z =
zc(p), with

1 + (2p− 1)zc + (1− zc)e2pzc = 0, (3.11)

Fig. 6. Full line: plot of the dynamical entropy of the fer-
romagnetic chain with constrained Glauber dynamics, given
by Σ1/2(E) (3.10), against energy E. Dashed line: predic-
tion (2.5, 2.9) of the a priori approach.

and at the maximum energy E = 0, corresponding
to z → 0. Figure 6 shows a plot of the dynamical en-
tropy Σ1/2(E), as given by (3.10), against the energy E
of the final state. The prediction of the a priori approach
is plotted for comparison. The endpoint values of the dy-
namical entropy are Σ1/2(−1) = ln zc(1/2) = 0.245660
and Σ1/2(0) = ln 2 = 0.693147.

4 Constrained Kawasaki dynamics

4.1 Definition of the model

We finally investigate a ferromagnetic Ising chain with
conserved dynamics at zero temperature, in the presence
of kinetic constraints.

Consider the ferromagnetic chain with Hamilto-
nian (3.1), but now with Kawasaki dynamics, where only
pairs of opposite spins (sn = σnσn+1 = −1) may be
flipped, so that the magnetization is locally conserved.
The flipping rates are again assumed to depend only on
the energy difference involved, which now reads

δH=2(σn−1σn+σn+1σn+2)=2(sn−1+sn+1) ∈ {−4, 0, 4} ·
We make the choice (3.2), defining thus a model
with constrained Kawasaki dynamics, already considered
in [20–22]. The possible spin moves are

−+−+ → −−++, +−+− → + +−− . (4.1)

Each move suppresses two unsatisfied bonds: sn−1 =
sn+1 = −1 → sn−1 = sn+1 = +1. The system eventually
reaches a blocked state, where the spin patterns +−+−
and −+−+ are absent. Equivalently, there are at most
two consecutive unsatisfied bonds.

Considering unsatisfied bonds as empty and satisfied
bonds as occupied, as in (3.4), the moves (4.1) read

◦ ◦ ◦ → • ◦ •,
so that the dynamics is equivalent to the random deposi-
tion of hollow trimers, a case of RSA that seems not to
have been studied so far.
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4.2 A priori statistics

We consider the restricted a priori ensemble of blocked
configurations with energy E. The entropy Sap(E) of this
ensemble can again be evaluated by means of the transfer-
matrix formalism. The partition functions of a finite chain
of N spins, now labeled by the prescribed values of its last
two bonds (◦ or •), obey the recursion

Z••N+1

Z•◦N+1

Z◦•N+1

Z◦◦N+1

 = T


Z••N
Z•◦N
Z◦•N
Z◦◦N

 ,

where the 4× 4 transfer matrix

T =


eβ 0 eβ 0

e−β 0 e−β 0
0 eβ 0 eβ

0 e−β 0 0


has a reducible characteristic polynomial, λP3(λ), with
P3(λ) = λ3 − eβλ2 − λ− e−β. Thermodynamic quantities
are still given by (2.10) in terms of the largest root λ+

of P3, i.e., in parametric form:

z = eβλ+, λ2
+ =

z2 + z + 1
z

, e2β =
z3

z2 + z + 1
,

hence

E =
1− z2

z2 + 2z + 3
,

Sap =
(z2 + z + 1) ln(z2 + z + 1)− z(2z + 1) ln z

z2 + 2z + 3
· (4.2)

The entropy of the full a priori ensemble of blocked
states, irrespective of their energy, is equal to the maxi-
mum value of the entropy Sap(E), corresponding to β = 0,
where we have z3−z2−z−1 = 0, hence z = z0 = 1.839287
and

S?ap =ln z0 =0.609378, E?=
1− z2

0

z2
0 +2z0 + 3

=−0.236840.

The differenceΣap(E) = S?ap−Sap(E), introduced in (2.9),
to be plotted in Figure 8, vanishes quadratically as

Σap(E) ≈ c (E−E?)2
, c=

(z2
0 +2z0+3)2

8z4
0(z2

0 +4z0+1)
=0.947620,

so that N VarE ≈ 1/(2c) = 0.527638.

4.3 Dynamics of cluster densities and energy

We again consider an initial state of the form (3.5). The
densities p`(t) obey linear equations similar to (2.18):

dp`(t)
dt

= −(`− 2)p`(t) + 2
∑
k≥`+3

pk(t)

for ` ≥ 2, with p`(0) = (1−p)2p`. The ansatz (2.19) yields
the solution

p`(t) = (1− pe−t)2 exp
(

2p(e−t − 1) + p2(e−2t − 1)
)

× p`e−(`−2)t. (4.3)

The dynamical equation for ` = 1,

dp1(t)
dt

= p3(t) +
∑
k≥4

kpk(t),

is special, because any move generates an isolated unsat-
isfied bond. Using (4.3), we get

p1(t) = p+ p2(pe−t − 2) exp
(

2p(e−t − 1) + p2(e−2t − 1)
)

− 2p2e−(1+p)2
∫ 1+p

1+pe−t
ey

2
dy. (4.4)

Equation (3.6) then yields

E(t) = −1 + 2p− 4p2e−(1+p)2
∫ 1+p

1+pe−t
ey

2
dy.

Only inactive clusters of one or two unsatisfied bonds sur-
vive in the final states:

p1(∞) = p− 2p2e−2p−p2 − 2p2e−(1+p)2
∫ 1+p

1

ey
2

dy,

p2(∞) = p2e−2p−p2
,

so that

E(∞) = −1 + 2p− 4p2e−(1+p)2
∫ 1+p

1

ey
2

dy. (4.5)

This result was shown in Figure 1.
For an initial state close to the ferromagnetic ground-

state (E(0) → −1, i.e., p → 0), the behavior E(∞) ≈
E(0)− 4p3 is easily explained in terms of clusters of three
unsatisfied bonds. The energy of blocked states then in-
creases monotonically against p, to the maximum value

E(∞)p=1 = 1− 4e−4

∫ 2

1

ey
2

dy = −0.098204,

corresponding to the antiferromagnetically ordered initial
state (p = 1). For a random initial configuration (p =
1/2), we have

E(∞)p=1/2 = −e−9/4

∫ 3/2

1

ey
2

dy = −0.274087.

The last two results are already in [20,22].
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4.4 Spin and energy correlations

The energy correlation function Γn(∞) can be evalu-
ated analytically, similarly to Sections 2.4 and 3.3. In the
present situation final results are, however, less explicit.

We consider the one-cluster function cn(t) and the two-
cluster function dm,k,n(t), defined in (2.29, 2.30). The rate
equations obeyed by these functions, and the way to solve
them, are similar to (2.34, 2.35).

The one-cluster function obeys

dcn(t)
dt

= −(n− 2)cn(t)− 2cn+1(t)− 2cn+2(t) (n ≥ 2),

dc1(t)
dt

= −2c3(t),

hence

cn(t) = exp
(

2p(e−t − 1) + p2(e−2t − 1)
)

×pne−(n−2)t (n ≥ 2),

c1(t) = p− 2p2e−(1+p)2
∫ 1+p

1+pe−t
ey

2
dy,

so that

c1(∞) = p− 2p2e−(1+p)2
∫ 1+p

1

ey
2

dy,

c2(∞) = p2e−2p−p2
, (4.6)

in agreement with (2.31, 4.3), and (4.4).
The two-cluster function obeys

ddm,k,n(t)
dt

= −(m− 2)dm,k,n(t)− (n− 2)dm,k,n(t)

−dm+1,k,n(t)− dm+1,k−1,n(t)

−dm,k−1,n+1(t)− dm,k,n+1(t) (4.7)

−dm+2,k,n(t)− dm+2,k−2,n(t)

−dm,k−2,n+2(t)− dm,k,n+2(t).

Besides the conventions of Section 2.4, only some of the
terms are present in the right-hand side for either m or
n = 1 or 2, namely those for which the underlined in-
dex is greater than 2. Furthermore, for k = 1 the sum
dm+2,k−2,n(t) + dm,k−2,n+2(t) is replaced by cm+n+1(t).
As in previous cases, we look for a solution to (4.7) of the
form

dm,k,n(t) = Ak(t)z(t)m+n (m,n ≥ 2),
dm,k,1(t) = Bk(t)z(t)m (m ≥ 2),
d1,k,1(t) = Dk(t),

where z(t) has been introduced in (2.20). The proce-
dure then consists in introducing generating series A(x, t),
B(x, t), D(x, t), similar to (2.38), writing differential equa-
tions obeyed by these functions, and solving the latter
equations. This requires some lengthy and tedious algebra.

The energy correlation function Γn in the blocked
states is still given by (2.28) in terms of c1(∞) and

d1,n−1,1(∞), so that the function of most interest is
D(x,∞), for which we are left with the expression

D(x,∞) =
p2

1− x − p
3(x+ 2)e−(1+p)2

∫ 1+p

1

ey
2

dy

− 2p3

1− x

√
2(x2 + 1) exp

(
− (x+ 1 + p(x2 + 1))2

2(x2 + 1)

)
×
∫ b(1)

b(0)

ey
2

dy +
p3

x2

√
2(x2 + 1)

× exp
(
− (x+ 1 + p(x2 + 1))2

2(x2 + 1)

)
×
∫ 1

0

R(x, u) du
∫ b(u)

b(0)

ey
2

dy, (4.8)

with the notations

R(x, u) =
x2 + 1
1− x (1− x+ px(1− x) + 2p2x2)

× exp
(
p(x+ 1)(u− 1) +

p2

2
(x2 + 1)(u2 − 1)

)
−(1− x2 + px(1− 2x− x2)u)

× exp
(
p(1− x)(u− 1) +

p2

2
(1− x2)(u2 − 1)

)
+(x2 + 1)

∫ 1+px

1+pxu

e−y
2

dy

× exp
(

1 + p(x− 1 + (x+ 1)u)

+
p2

2
(
x2 − 1 + (x2 + 1)u2

))
and

b(u) =
x+ 1 + p(x2 + 1)u√

2(x2 + 1)
·

The function D(x,∞) has a simple pole at x = 1,
with residue −c1(∞)2, where c1(∞) has been evaluated
in (4.6), so that the d1,k,1(∞) converge to c1(∞)2 as the
distance k becomes infinitely large, as it should. The fall-
off of the difference d1,k,1(∞) − c1(∞)2, and that of the
connected correlation function Γ conn(∞), are related to
the behavior of D(x,∞) as |x| is large. The result (4.8)
leads to the estimate

D(x,∞) ∼ exp(2px− p2x2),

with exponential accuracy. The results summarized in Ap-
pendix B then imply

Γ conn
n (∞) ∼ pn

(n/2)!
cos
(nπ

2
−
√

2n
)
. (4.9)

The result (4.8) does not however lead to any useful ex-
pression for Γn, even for n = 1. Figure 7 shows a loga-
rithmic plot of the spin and energy correlation functions



G. De Smedt et al.: Jamming, freezing and metastability in one-dimensional spin systems 377

Fig. 7. Spin (site) and energy (bond) correlation functions in
the blocked states of the ferromagnetic chain with constrained
Kawasaki dynamics, measured in a numerical simulation. Full
(open) symbols show positive (negative) correlations. Circles
and full line: logarithm of the absolute value of the connected
energy correlation Γ conn

n (∞). Triangles and full line: logarithm
of the absolute value of the full spin correlation Cn(∞). Dashed
line: logarithm of asymptotic behavior 1/(2n(n/2)!) up to a
multiplicative constant, meant as a guide to the eye.

against n, as measured in a numerical simulation for a
random initial condition (p = 1/2). The data shown cor-
respond to a total of 5 × 1010 spins. Both the full spin
correlation Cn(∞) and the connected energy correlation
Γ conn
n (∞) = Γn(∞)−E(∞)2 are found to agree with the

asymptotic result (4.9). The absolute value of the data fol-
lows the predicted fall-off, shown as a dashed line, while
the signs roughly follow the predicted pattern (+ +−−),
up to more and more seldom mistakes.

4.5 Distribution of final energy and dynamical entropy

We end up with the distribution of the final energy of a
finite sample. This analysis will follow the lines of Sec-
tions 2.5 and 3.4, the main difference being that (4.10)
will have to be solved numerically.

We consider first the case of a single cluster of size ` ≥
2, whose initial configuration is only made of unsatisfied
bonds. Let ν` be the number of spin flips of this cluster.
Equation (2.41) is replaced by

ν` = 2 + ν`1 + ν`2 ,

where `1 = n − 1 and `2 = ` − n − 2, and the breaking
point n is uniform in the range 1 ≤ n ≤ ` − 2. Hence
equation (2.44) for the generating series Φ(x, λ) is replaced
by

x
dΦ(x, λ)

dx
= x3e2λΦ(x, λ)2 + 2Φ(x, λ)− x− 2. (4.10)

In contrast with (2.44) and (3.9), we have not been able
to solve the Riccati equation (4.10) analytically.

We now consider the final total energy NEN of a finite
chain of N spins, with the initial state (3.5). The tails of

Fig. 8. Full line: plot of the dynamical entropy of the ferromag-
netic chain with constrained Kawasaki dynamics, against en-
ergy E. Data are obtained by solving numerically (4.10, 4.11),
and (4.12), for p = 1/2. Dashed line: prediction (4.2) of the
a priori approach.

the distribution of EN are again given by an estimate
similar to (2.8),

P (EN ) ∼ exp(−N Σp(EN )),

where the large-deviation function Σp(E) reads, in para-
metric form,

E = − 1
xc

dxc
dλ

, Σp = lnxc −
λ

xc

dxc
dλ

, (4.11)

and xc(λ) = exp(−F (λ)) is the real positive solution of

Φ(pxceλ,−2λ) =
eλ

(1− p)xc
· (4.12)

The function Σp(E) can be evaluated analytically in
some regimes. Skipping any detail, we mention that the
limits

Σp(−1) = − ln(1− p), Σp(1/3) = −1
3

ln(p2(1− p)),

at the ground-state energy E = −1 and at the maximum
energy E = 1/3 can be determined exactly. Moreover,
the solution to (4.10) can be expanded as a power series
Φ(x, λ) = 1/(1 − x) + λΦ1(x) + λ2Φ2(x) + · · · We thus
recover the mean energy E(∞) (4.5), and obtain the fol-
lowing expression for the scaled energy variance:

N VarE ≈ 2p(1− p)
(
1− 4p2

)
+ 4(1− p)2B(p)

−4(1− p)2
(
3− 4p+ 4p3

)
A(p)

−2(1− p)3
(
5− 7p+ 4p3

)
A(p)2,

with

A(p)=
2p2

(1−p)2
e−(1+p)2

∫ 1+p

1

ey
2

dy=
2p−1−E(∞)

2(1−p)2
,

B(p)=
p2

(1−p)2
e−(1+p)2

∫ 1+p

1

ey
2
((y−2)A(y−1)−2)2 dy.

Figure 8 shows a plot of the dynamical entropy Σ1/2(E)
obtained by solving numerically (4.10, 4.11, 4.12). The
prediction (4.2) of the a priori approach is shown for com-
parison. For p = 1/2, we have Σ1/2(−1) = Σ1/2(1/3) =
ln 2 = 0.693147 and N VarE ≈ 0.459839.
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5 Discussion

We have presented a parallel study of the zero-
temperature dynamics of three one-dimensional Ising
models with kinetic constraints, to which a number of
previous studies have already been devoted: paramagnetic
CIC models [14–17] (Sect. 2), ferromagnetic chain with
constrained Glauber dynamics [18,19] (Sect. 3), ferromag-
netic chain with constrained Kawasaki dynamics [20–22]
(Sect. 4).

The common characteristic feature of these models is
that their zero-temperature dynamics is fully irreversible:
each spin can flip at most once during its whole history.
As shown in the present work, these stochastic dynam-
ical systems can be mapped onto models of irreversible
deposition [27]: CSA of monomers (•) for paramagnetic
CIC models, RSA of dimers (••) for the ferromagnetic
chain with constrained Glauber dynamics, RSA of hollow
trimers (•◦•) for the ferromagnetic chain with constrained
Kawasaki dynamics. This exact mapping onto RSA or
CSA models allows the analytical determination of many
physical quantities. Assuming an uncorrelated initial state
with prescribed energy (or magnetization), we have ob-
tained exact results for the three models, and compared
them to the predictions of the a priori approach, testing
thus the so-called Edwards hypothesis in this particular
zero-temperature framework.

We have first shown that the jamming time grows log-
arithmically with the system size, up to finite fluctuations
given by extreme-value statistics. The result (2.26, 2.27),
established for the CIC, also holds quantitatively for
the ferromagnetic chain with constrained Glauber and
Kawasaki dynamics, with respectively α = p2e−2p and
α = p3e−2p−p2

.
There is a complete lack of ergodicity in these irre-

versible models. The mean final energy indeed bears a non-
trivial dependence on the initial condition, as depicted in
Figure 1. For a random initial configuration, the compari-
son of the exact dynamical results for the average and vari-
ance of the final energy with the prediction of the a priori
(Edwards) approach reveals systematic differences, which
have either sign, and an absolute value ranging up to some
20 percent (see Tab. 1).

The two-point spin (site) and energy (bond) correla-
tion function in the final states has also been evaluated,
either by analytical means or by accurate numerical sim-
ulations. Connected correlations fall off factorially (see
Figs. 3, 5, 7), often with an oscillating sign. A super-
exponential fall-off of correlations is indeed known to be
generically obeyed in RSA models. Such a feature cannot
be reproduced by an a priori ensemble, where correlations
generically decay exponentially, with a finite correlation
length, related to the first two eigenvalues of the transfer
matrix.

We have also determined the distribution of the en-
ergy of the final states beyond the Gaussian approxima-
tion. Such a problem seems to have been tackled only once
in the RSA literature [32]. We thus obtain large-deviation
estimates for the exponentially small tails of the distri-
bution. The corresponding dynamical entropy depends on

the initial energy (or magnetization). The comparison of
the result for a random initial configuration (p = 1/2)
with the a priori approach again shows differences at a
quantitative level (see Figs. 4, 6, 8).

The results obtained so far invalidate the Edwards hy-
pothesis in the present situation of fully irreversible zero-
temperature dynamics. There are indeed systematic dif-
ferences between the exact dynamical expressions and the
predictions of the a priori approach, and even qualitative
discrepancies, such as the super-exponential fall-off of cor-
relations.

The present work also questions the existence of any
simple relationship between the landscape of metastable
states and the slow dynamics just above the dynamical
phase transition. Indeed, on the one hand, all the results
on the zero-temperature dynamics of the CIC are indepen-
dent of the parameter a, which interpolates between the
ACIC for a = 0 or a = 1 and the SCIC for a = 1/2. On
the other hand, these limiting cases are known to have
different kinds of slow dynamics in the presence of ac-
tivated processes, at low temperature. For instance, the
relaxation time to equilibrium diverges as τeq ∼ exp(2β)
for the SCIC [15], and as τeq ∼ exp(β2/(ln 2)) for the
ACIC [17].

In spite of its specificity, the present approach may
also shed some new light on other quantities and/or other
situations of interest. One example is the size distribution
of ordered clusters, which has been recently shown to be a
useful tool to test the Edwards hypothesis in spin models
under tapping [25]. In the present context the exact de-
termination of the density f`(∞) of clusters of ` occupied
sites in the final states would require a lengthy calcula-
tion. However its exponential fall off for a large cluster
size is related to the ground-state dynamical entropy as
f`(∞) ∼ exp(−`Σp(E = −1)). We thus obtain the simple
estimate f`(∞) ∼ (1− p)`, both for CIC and constrained
Kawasaki dynamics, expressing that the long ordered clus-
ters in the final state have to be already present in the
initial state, while the result f`(∞) ∼ zc(p)−` (see (3.11))
for constrained Glauber dynamics is non-trivial.

Finally, the present situation of a quench from a dis-
ordered initial configuration (infinite initial temperature)
can be viewed as the relaxation part of a cycle of random
tapping with infinitely high intensity. It would also be de-
sirable to extend at least some of our results to the more
realistic situation of a finite tapping intensity.

Interesting discussions with Silvio Franz are gratefully
acknowledged.

Appendix A: Averaging a multiplicative cluster
function

Consider a finite chain of N spins σn = ±1, numbered n =
1, . . . , N . The chain is naturally partitioned into clusters
of parallel spins. Let M be the number of clusters, and
L1, L2, . . . , LM be the lengths of the clusters, with L1 +
· · · + LM = N . Assume σ1 = +1. We have σn = +1 for
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n = 1, . . . , L1, then σn = −1 for n = L1 + 1, . . . , L1 + L2,
and so on.

A multiplicative cluster function is a quantity of the
form

qN =
{
fL1 gL2 fL3 · · · if σ1 = +1,
gL1 fL2 gL3 · · · if σ1 = −1,

where each cluster of L up spins brings a factor fL, and
each cluster of L down spins brings a factor gL.

Averaging a quantity such as qN over a state of the
form (2.13) amounts to summing the contributions of
all the partitions of N into cluster lengths {Lk, k =
1, . . . ,M}, with the a priori weight

W ({Lk}) =
{

(1− p)L1 pL2 (1− p)L3 · · · if σ1 = +1,
pL1 (1− p)L2 pL3 · · · if σ1 = −1.

In order to perform this summation, we introduce the gen-
erating series

f(x)=
∑
L≥1

fLx
L, g(x)=

∑
L≥1

gLx
L, Q(x)=

∑
N≥1

〈qN 〉xN .

If σ1 = +1, we have

Q(x) =
∑

L1,L2,L3,...

fL1((1− p)x)L1 gL2(px)L2

×fL3((1− p)x)L3 . . .

= f((1− p)x) + f((1− p)x)g(px)
+f((1− p)x)g(px)f((1− p)x) + · · · ,

where the successive terms are the contributions of the
partitions of the chain into M = 1, 2, 3, . . . clusters.
Adding the contribution of the sector σ1 = −1, and sum-
ming up the geometrical series, we obtain the result

Q(x) =
f((1− p)x) + g(px) + 2f((1− p)x)g(px)

1− f((1− p)x)g(px)
,

(A.1)

which interpolates between Q(x) = f(x) at p = 0 and
Q(x) = g(x) at p = 1.

Appendix B: Expanding exp(ax− bx2)
as a power series

This appendix is devoted to the power-series expansion

exp(ax− bx2) =
∑
n≥0

fn(a, b)xn.

An identification with the generating series of Hermite
polynomials [35]:∑

n≥0

Hn(z)
xn

n!
= exp(2zx− x2)

leads to

fn(a, b) =
bn/2

n!
Hn

(
a

2
√
b

)
·

We are mostly interested in the asymptotic behavior of the
coefficients fn(a, b) as n gets large, for fixed a and b. The
asymptotic expansion of Hermite polynomials [35] yields

fn(a, b) ≈ bn/2

(n/2)!
exp
(
a2

8b

)
cos
(
nπ

2
− a
√
n

2b

)
· (B.1)

The above estimate becomes exact for any finite n in
the simple situation where a = 0, where one has straight-
forwardly

f2k(0, b) =
(−b)k
k!

, f2k+1(0, b) = 0.

For generic values of a, the signs of the coefficients
fn(a, b) are given by the cosine function in (B.1). They
oscillate according to the four-periodic pattern (+ +−−),
except for ‘mistakes’ which take place more and more sel-
domly, for n ≈ k2µ, with

µ =
π2b

2a2
·

For a > 0, mistakes are isolated + or − signs. For a < 0,
they consist of three consecutive + + + or −−− signs.
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26. A. Lefèvre, preprint cond-mat/0202376

27. For a comprehensive review, see: J.W. Evans, Rev. Mod.
Phys. 65, 1281 (1993)

28. B. Widom, J. Chem. Phys. 44, 3888 (1966)
29. For reviews, see: A. Crisanti, G. Paladin, A. Vulpiani,

Products of Random Matrices in Statistical Physics
(Springer, Berlin, 1992); J.M. Luck, Systèmes désordonnés
unidimensionnels (Collection Aléa, Saclay, 1992)
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